Text
Multivariate data analysis : A global perspective 7th ed
Multivariate analysis techniques are popular because they enable organizations to create knowledge and thereby improve their decision making. Multivariate analysis refers to all statistical techniques that simultaneously analyze multiple measurements on individuals or objects under investigation. Thus, any simultaneous analysis of more than two variables can be loosely considered multivariate analysis. Many multivariate techniques are extensions of univariate analysis (analysis of single-variable distributions) and bivariate analysis (cross-classification, correlation, analysis of variance, and simple regression used to analyze two variables). For example, simple regression (with one predictor variable) is extended in the multivariate case to include several predictor variables. Likewise, the single dependent variable found in analysis of variance is extended to include multiple dependent variables in multivariate analysis of variance. Some multivariate techniques (e.g., multiple regression and multivariate analysis of variance) provide a means of performing in a single analysis what once took multiple univariate analyses to accomplish. Other multivariate techniques, however, are uniquely designed to deal with multivariate issues, such as factor analysis, which identifies the structure underlying a set of variables, or discriminant analysis, which differentiates among groups based on a set of variables. Confusion sometimes arises about what multivariate analysis is because the term is not used consistently in the literature. Some researchers use multivariate simply to mean examining relationships between or among more than two variables. Others use the term only for problems in which all the multiple variables are assumed to have a multivariate normal distribution. To be considered truly multivariate, however, all the variables must be random and interrelated in such ways that their different effects cannot meaningfully be interpreted separately. Some authors state that the purpose of multivariate analysis is to measure, explain, and predict the degree of relationship among variates (weighted combinations of variables). Thus, the multivariate character lies in the multiple variates (multiple combinations of variables), and not only in the number of variables or observations. For our present purposes, we do not insist on a rigid definition of multivariate analysis. Instead, multivariate analysis will include both multivariable techniques and truly multivariate techniques, because we believe that knowledge of multivariable techniques is an essential first step in understanding multivariate analysis.
Call Number | Location | Available |
---|---|---|
Tan 519. 535 Mul - ( 7th ed ) | PSB lt.dasar - Pascasarjana | 6 |
Penerbit | New York Pearson., 2010 |
---|---|
Edisi | - |
Subjek | Mutivariate data analysis |
ISBN/ISSN | - |
Klasifikasi | - |
Deskripsi Fisik | - |
Info Detail Spesifik | - |
Other Version/Related | Tidak tersedia versi lain |
Lampiran Berkas | Tidak Ada Data |