Logo

Pusat Sumber Belajar FEB UI

  • FAQ
  • Berita
  • Rooms
  • Bantuan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Inggris Bahasa Indonesia
  • Search
  • Google
  • Advanced Search
*sometimes there will be ads at the top, just scroll down to the results of this web
No image available for this title

Text

Biased Auctioneers

Mathieu Aubry - ; Roman Kraussl - ; Gustavo Manso - ; Christophe Spaenjers - ;

We construct a neural network algorithm that generates price predictions for art at auction, relying on both visual and nonvisual object characteristics. We find that higher automated valuations relative to auction house presale estimates are associated with substantially higher price-to-estimate ratios and lower buy-in rates, pointing to estimates' informational inefficiency. The relative contribution of machine learning is higher for artists with less dispersed and lower average prices. Furthermore, we show that auctioneers' prediction errors are persistent both at the artist and at the auction house level, and hence directly predictable themselves using information on past errors.


Ketersediaan

Call NumberLocationAvailable
PSB lt.dasar - Pascasarjana (Koleksi Majalah)1
PenerbitUSA: The American Finance Association 2023
EdisiVolume 78, Issue 2, April 2023, Pages 795-833
SubjekMarket value
Price Predictions
ISBN/ISSN1540-6261
KlasifikasiNONE
Deskripsi FisikFirst Published: 18 January 2023
Info Detail SpesifikThe Journal of Finance
Other Version/RelatedTidak tersedia versi lain
Lampiran Berkas
  • https://remote-lib.ui.ac.id:2075/10.1111/jofi.13203

Pencarian Spesifik
Where do you want to share?